- Switch $\pm 10-\mathrm{V}$ Analog Signals
- TTL Logic Capability
- 5-to 30-V Supply Ranges
- Low (100 Ω) On-State Resistance
- High ($10^{11} \Omega$) Off-State Resistance
- 8-Pin Functions

description

The TL601, TL604, TL607, and TL610 are a family of monolithic P-MOS analog switches that provide fast switching speeds with high $r_{\text {off }} / r_{\text {on }}$ ratio and no offset voltage. The p-channel enhancement-type MOS switches accept analog signals up to $\pm 10 \mathrm{~V}$ and are controlled by TTL-compatible logic inputs. The monolithic structure is made possible by BI-MOS technology, which combines p-channel MOS with standard bipolar transistors.

These switches are particularly useful in military, industrial, and commercial applications such as data acquisition, multiplexers, A / D and D / A converters, MODEMS, sample-and-hold systems, signal multiplexing, integrators, programmable operational amplifiers, programmable voltage regulators, crosspoint switching networks, logic interface, and many other analog systems.

The TL601 is an SPDT switch with two logic control inputs. The TL604 is a dual complementary SPST switch with a single control input. The TL607 is an SPDT switch with one logic control input and one enable input. The TL610 is an SPST switch with three logic control inputs. The TL610 features a higher $r_{\text {off }} / r_{\text {on }}$ ratio than the other members of the family.
The TL601C, TL604C, TL607C, and TL610C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, the TL601I, TL604I, TL607I, and TL610I are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and theTL601M, TL604M, TL607M, and TL610M are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

TL604

TL607

schematics of inputs and outputs

TL601, TL604, TL607, TL610

 P-MOS ANALOG SWITCHESD2161, JUNE 1976 — REVISED OCTOBER 1986
logic symbols \dagger and switch diagrams

FUNCTION TABLE

INPUTS		ANALOG SWITCHES	
A	B	S1	S2
L	X	Off (open)	On (closed)
X	L	Off (open)	On (closed)
H	H	On (closed)	Off (open)

INPUT	ANALOG SWITCHES	
A	S1	S2
H	On (closed)	Off (open)
L	Off (open)	On (closed)

FUNCTION TABLE			
INPUTS			ANALOG SWITCHES
A	B	C	S
L	X	X	Off (open)
X	L	X	Off (open)
X	X	L	Off (open)
X	H	H	On (closed)

† These symbols are in accordance with ANSI/IEEE Std 91-1984.
TL607 logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, $\mathrm{V}_{\mathrm{CC}}^{+}$((ee Note 1)		30 V
Supply voltage, $\mathrm{V}_{\text {CC- }} \ldots \ldots \ldots .$.		-30 V
$\mathrm{V}_{\text {CC+ }}$ to $\mathrm{V}_{\text {CC- }}$ supply voltage differential		35 V
Control input voltage		$\mathrm{V}_{\mathrm{CC}+}$
Switch off-state voltage		30 V
Switch on-state current		10 mA
Operating free-air temperature range:	TL601C, TL604C, TL607C, TL610C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
	TL601I, TL604I, TL607I, TL610I	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	TL601M, TL604M, TL607M, TL610M	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature (1,6 mm) 1/16 inch from case for 60 seconds: JG package		$300^{\circ} \mathrm{C}$
Lead temperature (1,6 mm) 1/16 inch	m case for 10 seconds: P package	$260^{\circ} \mathrm{C}$

NOTE 1: All voltage values are with respect to network ground terminal.
recommended operating conditions

	$\begin{aligned} & \text { TL601C, TL604C } \\ & \text { TL607C, TL610C } \end{aligned}$			$\begin{aligned} & \hline \text { TL601I, TL604I } \\ & \text { TL607I, TL610I } \end{aligned}$			$\begin{aligned} & \text { TL601M, TL604M } \\ & \text { TL607M, TL610M } \end{aligned}$			UNIT
	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Supply voltage, $\mathrm{V}_{\mathrm{CC}+}$ (see Figure 1)	5	10	25	5	10	25	5	10	25	V
Supply voltage, $\mathrm{V}_{\text {CC }}$ - (see Figure 1)	-5	-20	-25	-5	-20	-25	-5	-20	-25	V
$\mathrm{V}_{\mathrm{CC}}+$ to V_{CC} supply voltage differential (see Figure 1)	15		30	15		30	15		30	V
High-level control input voltage, V_{IH}	2		5.5	2		5.5	2		5.5	V
Low-level control input voltage, V_{IL} All inputs			0.8			0.8			0.8	
Voltage at any analog switch (S) terminal	$\mathrm{V}_{\mathrm{CC}-+8}$		$\mathrm{V}_{\text {CC+ }}$	$\mathrm{V}_{\mathrm{CC}-+8}$		VCC+	$\mathrm{V}_{\mathrm{CC}-+8}$		VCC+	V
Switch on-state current			10			10			10	mA
Operating free-air temperature, T_{A}	0		70	25		85	-55		125	${ }^{\circ} \mathrm{C}$

TL601, TL604, TL607, TL610

P-MOS ANALOG SWITCHES

D2161, JUNE 1976 — REVISED OCTOBER 1986
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}^{+}, 10 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}=\mathbf{- 2 0} \mathrm{V}$, analog switch test current $=1 \mathrm{~mA}$ (unless otherwise noted)

\dagger MAX is $70^{\circ} \mathrm{C}$ for C-suffix types, $85^{\circ} \mathrm{C}$ for I-suffix types, and $125^{\circ} \mathrm{C}$ for M-suffix types.
\ddagger All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ except for $\mathrm{l}_{\text {off }}$ at $\mathrm{T}_{A}=\mathrm{MAX}$.
NOTE 2: The other terminal of the switch under test is at $\mathrm{V}_{\mathrm{CC}}^{+},=10 \mathrm{~V}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}_{+}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}-}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
toff Switch turn-off time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \quad$ See Figure 2				400	500	ns
ton Switch turn-on time					100	150	

PARAMETER MEASUREMENT INFORMATION

Figure 1 shows power supply boundary conditions for proper operation of the TL601 Series. The range of operation for supply $\mathrm{V}_{\mathrm{CC}}+$ from 5 V to 25 V is shown on the vertical axis. The range of V_{CC} - from -5 V to -25 V is shown on the horizontal axis. A recommended $30-\mathrm{V}$ maximum voltage differential from V_{CC} to V_{CC} governs the maximum V_{CC} for a chosen V_{CC} ((or vice versa). A minimum recommended difference of 15 V from $\mathrm{V}_{\mathrm{CC}+}$ to V_{CC} and the boundaries shown in Figure 1 allow the designer to select the proper combinations of the two supplies.
The designer-selected V_{CC} supply value for a chosen V_{CC} supply value limits the maximum input voltage that can be applied to either switch terminal; that is, the input voltage should be between $\mathrm{V}_{\mathrm{CC}-}+8 \mathrm{~V}$ and V_{CC} to keep the on-state resistance within specified limits.

Figure 1

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $Z_{o}=50 \Omega, \mathrm{t}_{\mathrm{r}} \geq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \geq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.

Figure 2

TYPICAL CHARACTERISTICS

Figure 3

M-SUFFIX DEVICES I-SUFFIX DEVICES SWITCH ON-STATE RESISTANCE VS
FREE-AIR TEMPERATURE

Figure 4

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

